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Abstract--The properties of a yon K~rm|tn vortex street are examined theoretically for bubbly flow 
around a rectangular obstacle. The time-dependent, two-dimensional Navier-Stokes equations 
describing each field are coupled through local pressure equilibration, a phenomenoiogical 
momentum exchange term and a new representation of the virtual mass acceleration terms. Bubble 
fragmentation and coalescence are represented by the effect of relaxation to local Weber number 
equilibrium in a transport equation for the time and space variations of bubble-number density. 
Turbulence is represented by an eddy viscosity model. High-speed computer results for an air-water 
system agree well with published data for downstream gas accumulation in the vortices. Variations in 
Strouhal frequency with upstream void fraction are discussed in terms of bubble sublayer growth 
along the sides of the obstacle and the resulting movement of the flow separation streamline. Satellite 
eddy formation is observed, and the alteration of street characteristics by bubble migration is 
examined. 

1. INTRODUCTION 

The periodic shedding of vortices from alternate sides of an obstacle in a fluid stream has 
been studied for almost one hundred years. Experimental observations of vibrations excited 
in wires by the flow of air were first reported by Strouhal (1878). Alhborn (1902) used 
visualization techniques to show the characteristic pattern of alternating vortices. A theory 
describing the vortex street in an infinite medium was first published by yon K~rm~n & 
Rubach ( 1912). 

Since these early investigations, yon K~rm~n vortex streets in circumstances involving 
only single-field flow have been extensively studied, both experimentally and theoretically. 
Roshko (1954) summarizes the results of the many experimental studies of right circular 
cylinders. Fage & Johansen (1927) present experimental results for a flat plate inclined at 
various angles to the flow. Bearman & Obasaju (1982) have studied fixed and oscillating 
square-section cylinders. Theoretical studies using real configurations have been accom- 
plished through the means of powerful numerical solution techniques, Fromm & Harlow 
(1963) and Harlow & Fromm (1964). 

For single-phase flow around a single obstacle, the fluid dynamics is characterized by 
several properties that  have been examined in detail by experimentalists and theorists. For 

aerodynamical  applications, the principal considerations are those of  drag and lift. For 

blunter obstacles, such as those considered in this paper, the properties of  drag and lift may  

also be of  interest. However,  the dominant  feature is the periodic shedding of  the vortices. 

The shedding is character ized by a dimensionless Strouhal  number,  S m ral ly ,  w h e r e f i s  the 

frequency of  the street (i.e. the inverse of  the time between the shedding of  successive 

vortices on any one side of  the obstacle), d is the cross-stream obstacle width, and v is the 
inlet velocity of  the liquid. For Reynolds numbers  (based on the cross-stream length of  the 

obstacle and the molecular viscosity) less than a critical value of  about  40, the flow pattern is 
steady, and the shedding frequency is not an issue. As the Reynolds number  increases above 

40, the Strouhal  number  increases to an asymptot ic  value of  about  0.2. Even for Reynolds 

numbers  above several hundred, when turbulence is noticeable, the dominant  frequency 
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nevertheless corresponds to an S of about 0.2. As shown by Roshko (1954), this dominance 
persists for circular cylinders to Reynolds numbers as high as 8000. 

Recently, investigators have begun to examine the inception and evolution of von 
Kfirm~n vortex streets in multifield flows. A theory for the motion of individual bubbles in 
unsteady nonuniform flows has been developed and applied by Thomas et al. (1983) to the 
special case of bubble entrapment and by a line vortex. An experimental study of vortex 
shedding for the vertical flow of an air-water system past blunt bodies has been published by 
Hulin et al. (1982). Theoretical studies of the same configuration have been described by 
Cook & Hariow (1984a) who use a numerical solution technique based upon a two-field 
approximation. 

The purpose of this paper is to examine the microphysical modeling described by the 
two-field equations and to summarize the properties of avon K~trm~n street in this type of 
bubbly flows. 

2. B A S I C  T W O - F I E L D  E Q U A T I O N S  

We write the ensemble-averaged, two-field equations for one phase dispersed in another. 
Either phase can be any one of the different states of matter (gas, liquid or solid), but in the 
present study we examine the case in which the dispersed material is a gas (air), and the 
continuous phase is a liquid (water). In this treatment, both fields are accelerated by 
variations of the same pressure. Because our calculations extend only over small spatial 
intervals, a meter or so, the microscopic densities, pL and pc, can be considered constant. 

In the absence of mass exchange between the phases, the continuity equations are 

and 

Opk 
O7 + V • (p[  u~) = 0 [1] 

op~ 
ot + v • (p~ uc) = O, [2] 

where p~: is the macroscopic density of the continuous phase, p~ is the macroscopic density of 
the dispersed phase; and uL and UG are the respective velocities of the continuous and 
dispersed phases. 

It is more convenient to work directly with the volume fractions of the two phases. We 
define 

P 

P L -  PLaL [3] 

and 

' [4] PG ~ PG~G, 

where or, and <xo are the volume fractions of the continuous and dispersed phases, 
respectively. For constant microscopic densities, .the mass-conservation equations become 

0--7" + V • (~LuD = 0 [5] 

and 

Ool G 
0t + V • (~,uc) = 0. [6] 

In general, aL + ctG = I. 
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The momentum equations are written in terms of volume fractions with the microscopic 
densities factored outside of the derivatives. 

OCtLUL ] 
PL[ at +V.(aLULUL) ~ - - o ~ L V p + p L o ~ L g + K ( u ~ - - U L ) + p L V L + M L  [7] 

and 

dang  ] 
p a l  at + V . (eauGua) = -- eG V p + pGeeg + K(uL -- UG) +pGVG+Me. [8] 

The pressure is p, the gravitational acceleration, g. The quantity K is a function that 
describes the interfacial momentum exchange between the fields. The effective viscous stress 
terms (both molecular and turbulent) for the continuous and dispersed phases are VL and Ve, 
respectively; the virtual mass terms are ML and Me. The momentum exchange function and 
the viscous stress and virtual mass terms are discussed in detail below. 

Because of the uncertainty with regard to swarming effects, we have intentionally 
included only the principal drag terms--omitting such possibly contributory terms as the 
vorticity-lift force, the lift and drag modifications due to shape distortion, the Bassett terms, 
and the nonsteady contributions to the flow-separation Taylor-Davies drag. Certainly, the 
effects represented by these terms will ultimately need serious consideration. These studies 
are anticipated to constitute further directions for our research. 

3. I N T E R A C T I O N  M O D E L S  

A. Virtual mass effect 
In the two-phase motion of a bubble through a liquid, the total effective mass of the 

bubble consists of the vapor itself plus a virtual mass that arises from the inertial properties 
of the liquid in the immediate vicinity of the bubble. A generalized formulation of the virtual 
mass effect has been derived by Cook & Hariow (1984b). The terms for [7] and [8] are 

' ,  ( o oo / } 
ML (~XL -- f~m ae) L Dt  Dt  ae (eL --- f~'--~ aG) (uG - uL) (uG - uL) [9] 

and 

Me (eL fumpLeLeG- f~mae) L [Dc__~_ue Dt DLu, Dt f ~ ' v  eL • ~(eL_f~mae)) tu~--uL)(ue--uL).  J [10] 

The Lagrangian time derivatives for the respective phases are given by Dt/Dt = O~ 
Ot + u; • V. The factor, f~m, is a parameter analogous to the virtual volume coefficient used 
in classical formulations of the effect. 

Under most circumstances the validity of the virtual mass concept for bubbles implies 
that f~mac is small compared to eL, so that the otherwise vanishing denominators in [9] and 
[10] are of no concern. Cook & Harlow (1984b) show that this formulation is internally 
conservative of momentum for an arbitrary Eulerian control volume and is mathematically 
objective. 

B. Momentum exchange function 
Cook & Harlow (1984a) write the interracial momentum exchange function in the 

form 

K - 3 CopL I au I [1 z] 
8 r( l  laL + 1 lac)  ' 
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where Co, the drag coefficient, is a function of Reynolds number and Morton number as 
described in section III-D. below. The bubble radius, r, depends on the local bubble number 
density and the local volume fraction. 6u is the relative velocity, ua - uL. 

C. Bubble coalescence, fragmentation and transport 
On the assumption that the bubbles are spherical and all the same size the local bubble 

radius is given by 

r = (3 ac/4~rN) t/3, [12] 

where N is the bubble number density. In equilibrium the bubble radius would be 
determined by a balance of surface tension and inertial forces as described by a Weber 
number criterion. 

2pt I' u, I 
We o/G ' [13] 

where o is the surface tension of the interface, re is the radius of the bubble in equilibrium 
and 6u, is the terminal rise velocity of the bubble. 

Conservative transport of bubble number density is altered by the effects of coalescence 
and fragmentation. We postulate a single-relaxation-time model of the form 

ON/Ot + V . u c N = w b ( N e -  N), [141 

in which the single-relaxation parameter, ~0b, controls the rates for both coalescence and 
fragmentation and, therefore, must depend strongly on whether the local bubble size is less 
than r< (the collision dominated coalescence regime) or greater than re (the rupture 
dominated fragmentation regime). More generally, the relaxation to Weber number 
equilibrium involves collision integrals over an appropriate two-integral distribution function 
together with a detailed description of bubble rupture dynamics resulting from the local 
forces. The complexity of these considerations is well beyond the scope of the present 
investigation, our immediate goal being to demonstrate which features of the flow are 
strongly sensitive to the choice of,o b and which are not. 

The equilibrium number density is obtained from [12] 

N< = 3c~o/4~rr~, [15] 

and r, is obtained by solving [ 13] with a specified value for We. 

D. Drag coefficient correlation functions 
The drag coefficient that appears in [1 1] varies as a function of bubble Reynolds 

number, 

Reb = 2r I ,Su I/ L, [16] 

and Morton number, 

= I g I  ,I/pL [I 7] 

where vL and UL are the kinematic and absolute viscosities, respectively, of the continuous 
phase. Utilizing the correlations of Peebles & Garber (1953) we write 

C o = 2 4 R e ;  ) , f o r R e b < 2 ,  [18] 

Co = 18.7 Re;  °'6s, for 2 _~ Reb --~ 4.02G~ "°'214 [19] 
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and 

Co = 0.6145r 16u I 11-2, for Reb >--- 4.02G~ °al4. [2o] 

The three regimes represented by [18] and [19] are Stokes, oscillating bubble and 
Taylor-Davies, respectively. Equation [20] is a linearized combination of two higher 
Reynolds number regimes reported in Peebles & Garber (1953). The simplification 
represents the data to within a degree of accuracy that is consistent with the uncertainties in 
the drag function due to swarming and nonsteady flow effects and is useful because it avoids 
a parameter space of little interest to us in which the momentum exchange function depends 
on the relative velocity to the fourth power. 

E. Viscous and turbulent stress models 
The role of viscosity, as measured by the Reynolds number Re, is a crucial one in the 

dynamics of avon K~rm~n vortex street. The usual definition of Reynolds number is 

Re ~ -~d/o, [21] 

where ~ is the average flow speed, d is a characteristic length (in this case the cross-stream 
obstacle width) and v is an appropriate kinematic viscosity. 

For a single fluid moving sufficiently slowly the relevant value of p is simply the 
molecular kinematic viscosity, ore. For higher speeds the flow Reynolds number still is usually 
characterized by means of the molecular viscosity, but the presence of turbulence suggests 
that a more relevant characterization should be based on the total effective viscosity, the sum 
of molecular and turbulence contributions. Following Launder & Spalding (1974), we can 
describe the turbulence eddy viscosity by means of the formula 

o, - C,s r~-~, [221 

where C, is about 0.02, s is an appropriate length scale of the turbulence, and q is the 
fluctuationai kinetic energy per unit mass. The magnitude of q can be estimated roughly as 
some fract ion,f  2, of the mean flow kinetic energy per unit mass, I/2 ~2. With v = vt + v= and 
with s expressed as some factor, fs, of the obstacle width, the effective Reynolds number 
becomes 

1 
Re,~ = C,f,f~ + ,/r,"~e" [231 

Following a suggestion by Lessen & Singh (1974), as the Reynolds number goes to infinity, 
the effective Reynolds number is bounded to a value that can be estimated as a few hundred. 
Since the Strouhal number is likewise bounded as a function of Reynolds number, it is 
perhaps more appropriate to examine the variations of Strouhal number with effective 
Reynolds number. 

For two-phase flow, the concept of Reynolds number becomes more complicated for 
several reasons. The presence of dispersed entities (e.g., bubbles, droplets or particles) has a 
significant influence on the effective viscosity, even when the flow is laminar. At higher 
speeds as in the present investigation, the nature of the turbulence is expected to be 
profoundly modified in several ways. There are at least two potential sources for turbulence 
creation, one from the fluctuations in the wakes of the individual entities and the other from 
the propensity to instability of the two-phase flow whenever there is appreciable relative 
motion between the fields. 
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For single-phase flow the representation of turbulence can be formulated to any of a 
variety of degrees of complexity. The simplest approach is to postulate a constant prescribed 
eddy viscosity. Mixing length theories belong to the next level of complexity. In general, 
however, we require equations describing the time-dependent transport of the turbulence. 
Transport equations for the Reynolds stress, Rij, are conceptually the most satisfactory 
approach. Simpler formulations, for example the k - ~ model, describe the transport of 
purely scalar quantities (the turbulence energy density and dissipation rate). 

For our two-phase flow calculations, our approach is to investigate a succession of models 
commencing with the simplest description, which utilizes an eddy viscosity given by [22]. 
The viscous and turbulent stresses are, therefore, included by writing 

and 

V L = (V • VaLV)UL [24] 

V a = (V • vctaV)ua. [25] 

Despite the simplicity of this model there is much to learn by its utilization, and comparisons 
between calculational results and experimental data are surprisingly good. Subsequent 
studies of this problem will rely on two-phase turbulence transport equations such as those of 
Besnard & Harlow (1985a,b) 

4. NUMERICAL PROCEDURE 

A. Solution technique 
The equations are written in finite-difference form, and the variables are advanced 

through time by a series of discrete steps. The methodology is similar to other schemes that 
we have used in two-field flows and is described in detail elsewhere (Cook & Harlow 
1984a). 

Each computational cycle consists of several solution phases. In phase l the convection, 
viscous stress, and spatial part of the virtual mass terms are calculated explicitly. In phase 2 
the velocities, volume fractions, and pressures are obtained by an iterative procedure 
designed to allow pressure effects to propagate over the entire caiculational mesh, a standard 
procedure for the treatment of incompressible fluids, as described by Harlow & Amsden 
(1975). In phase 3 we use a corrective procedure to tighten the convergence of the sum of the 
volume fractions to unity, and we update the old variables in anticipation of the next time 
cycle. 

The discretization techniques used in this methodology are a mixture of ceil-centered and 
donor-cell differencing schemes. Donor-cell differencing is used in the solution of the 
continuity equations and of the bubble number transport equation, where it automatically 
adds a small amount of artificial diffusion comparable in magnitude and opposite in sign to 
the lowest order truncation-error terms (Hirt 1968). The momentum equations are 
discretized using cell-centered differencing for the convection terms to avoid the excessive 
truncation-error viscosity arising from the donor-cell procedure and the resulting damping of 
the von Kfirmfin vortex street. 

B. Geometry and boundary conditions 
The bubbly Karman vortex street to which this present research is directed can be 

modeled with a two-dimensional rectangular coordinate system. We visualize a conduit in 
which a single object has been placed across the fluid flow. Figure 1 illustrates this 
geometry. 

The bottom is an inlet boundary where upstream-flow conditions are imposed by 
specifying vi; n and ai.in Because the principal effect of these boundary conditions is manifested 
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Figure 1. Typical conduit geometry. 

variables reflects the use of donor-cell convection for the volume fraction equations and 
centered convection for the momentum equations. The top is an outlet boundary. The 
velocities at this upper boundary are normalized to guarantee mass conservation and to 
ensure local continuity of the flow. 

Representation of the boundary conditions at the rigid walls of the conduit and obstacle 
requires a consideration of the probable boundary layer thickness that can be expected at 
those walls. If the boundary layer thickness is small compared to the dimensions of a 
calculational cell, then it is appropriate to use free-slip boundary conditions at the wall. The 
use of no-slip boundary conditions is appropriate only for those circumstances in which the 
boundary layer can be resolved. The thickness of a laminar boundary layer is expected to be 
small on both the obstacle and conduit walls for most circumstances of interest in this study. 
Turbulent boundary layer thickness is less amenable to precise characterization. On the 
obstacle we still expect the boundary layer to be small and are currently assuming this to be 
also the case on the conduit walls. Thus, the normal gradient of the tangential velocity 
vanishes. In addition, the normal component of the velocity and the gradient of any scalar 
variable vanish. 

The use of free-slip boundary conditions on the obstacle does not, however, preclude the 
shedding of vorticity that is crucial to the formation of a vortex street. The details of the 
vortex production immediately downstream of an obstacle are determined by the location of 
the flow separation points. For a long rectangular obstacle these points are the aft corners. 
For a short rectangular obstacle the flow separation at the forward corners may also be of 
significance for the production of vorticity. The vorticity created by the separated flow at the 
aft corners is properly represented by the velocity jump between the external and wake flow 
regions; for the forward corners proper representation of the vortex shedding may require 
very fine resolution in the finite-difference calculations. 

C. Initial conditions 
The nature of the initial conditions is such that they have no physical reality; hence, the 

transient stage of the solution preceding the regular oscillatory stage has no meaning. We 
assign inlet conditions everywhere in the calculational mesh and perturb the flow in a single 
cell located seven obstacle widths from the downstream left-hand edge of the obstacle. The 
perturbation hastens the development of the street. 

5. C A L C U L A T 1 O N A L  R E S U L T S  

A. Problem definition 
Four computer simulations are compared and identified as runs 1, 2, 3 and 4. The initial 

and boundary conditions for each run differ from those of the base case, run 2, in only one 
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significant way. Run 1 models a shorter channel to investigate the effect of the truncated 
caleulational grid on the street. In run 3 we widen the channel to examine the dependence of 
street properties on blockage ratio, which is defined as obstacle width, d, divided by channel 
width, W. Run 4 has the same channel dimensions as run 2, but uses a slower equilibrium 
relaxation rate, COb, for bubble fragmentation and coalescence. The value of COb chosen for 
runs 1, 2 and 3 corresponds to a rapid relaxation to local conditions relative to the expected 
period of the street. That is, if local conditions are conducive to  fragmentation or 
coalescence, the bubble-size adjustment occurs on a time scale that is short relative to the 
period. The value chosen in run 4 corresponds in contrast to a relaxation time that is long 
compared to the oscillatory period. 

The geometry used in all four runs is shown in figure 1. The cross-stream width of the 
obstacle is 3 cm, the downstream thickness is 2.5 cm. The upstream edge of the obstacle is 
4.5 cm from the inlet. Flow is vertical with gravity downward. 

To specify input conditions in the flow field below the obstacle, we must consider the 
question of bubble-size equilibrium in somewhat more detail. For the purpose of discussion, 
we recognize the existence of a bubble insertion point, which lies far below the inlet boundary 
shown in figure I. Two ranges in bubble size must be considered. If the inserted bubbles have 
a radius less than the equilibrium radius, the relaxation parameter COb is controlled by 
coalescence, which depends on the collision frequency. If the probable number of collisions 
between the insertion point and the inlet boundary is small, almost no coalescence occurs, 
and the inlet bubble radius does not differ from the arbitrarily specified insertion value. If, 
however, the collision frequency is not small the inlet value of r cannot be arbitrarily selected 
and must satisfy consistency conditions among re, We, 6ut, Ne and "a. These conditions are 
the Weber number equilibrium, 

re = oWe/2pL(~u,) ~, 

the geometrical relationship, 

r e = (3oto/4,rNe) ID, 

and the balance equation between buoyancy and drag, 

re = f ( a U , ) ,  

in whichf(~u,) is determined from bubble rise data. 
If the initial bubble radius is greater than re, the relaxation rate is controlled by 

fragmentation processes that may occur on a shorter time scale than the collisions. In this 
case it is important to select a self-consistent set of upstream inlet conditions. 

For the examples discussed here, we assume that the bubble radius has indeed 
equilibrated during the traverse from insertion to inlet. Incoming bubbles have an inlet 
radius of 0.2 cm. The upstream volume fraction is 10%, a midrange value chosen for 
comparison with the data of Hulin et aL (1984). The bubbles move relative to the incoming 
liquid at a rate of 25 cm/s. This radius, volume fraction, and relative velocity are consistent 
for a critical Weber number of 3.6. 

The parameters used in our turbulence model are assigned as follows: for Ct, [22], we 
estimate a value of 0.019; for f~, [23], a value of 0.1 and for f,, [23], a value of 0.5. The 
resulting effective Reynolds number is 333. The molecular Reynolds number is 27,000, 
based on the molecular kinematic viscosity of water, an inlet liquid flow rate of 90 cm/s and 
an obstacle width of 3 cm. 

The virtual volume coefficient, f~,, is expected to be in the range 0.0--0.5. To determine 
the apparent magnitude, we calculated the maximum bubble concentration in downstream 
vortices resulting from an inlet volume fraction of 2.82% and found that the valuef~m - 0.25 
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Table I. Parameters studied in the calculations 

L (cm) W(cm) ~ (s -t) 

Run 1 42 15 20 
Run 2 5 i 15 20 
Run 3 51 18 20 
Run4 51 15 4 
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resulted in good agreement  with the measurements  of  Hulin et al. (1982). In the expectation 

that  this coefficient should not depend on the upstream volume fraction, we calculated the 

bubble concentration for several other inlet volume fractions and found the agreement  

between our  predictions and Hulin 's  observations to be good. 

The parameters  that  are varied in the four calculations are summarized  in table 1, in 

which W is the width of the channel,  L is the length of  the channel and o~ b is the bubble 

number  relaxation rate. 

B. Characterization o f  the results 
Several representations of  the field variables are  used to character ize the flow. Scalar  

quantities are summarized in two-dimensional,  computer-generated contour plots at selected 

times (figures 2-6) .  In the plots local maxima are indicated by + ' s .  The  pressures plotted are 
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Figure 2. Contour plots of air volume fraction at equal time intervals. (a) t - 2.410 sen, (b) t - 2.475 
sen, (c) t - 2.540 see, (d) t - 2.605 ~c, (e) t - 2.670 see, (0 t - 2.735 scc, (g) t - 2.800 sen, (h) t - 

2.865 see, (i) t - 2.930 sen. 
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Figure 3. Contour plots of dynamic pressure at equal time intervals. (a) t - 2.410 sec, (b) t - 2.475 
sec, (c) t ffi 2.540 sec, (d) t - 2.605 sec, (e) t - 2,670 see, (f) t - 2.735 see, (g) t - 2.800 see, (h) t - 

2.865 sec, (i) t - 2.930 sec. 

the dynamic pressures, pressures from which we have subtracted the mean buoyancy for 

each horizontal layer. 

Two-dimensional velocity vector plots are presented for each field in figures 7 and 8. 

During the calculation the velocity vectors are interface-centered quantities; but for the 

purpose of plotting, the vectors are averaged so that they can be presented at cell centers. To 

determine the flow direction one aligns the vector tails, which lie on vertical and horizontal 

lines passing through the cell centers. To enhance vortex visualization, the velocities for both 
the water and air fields are referred to a reference frame moving with the inlet water 

velocity. 

Another useful way to represent the variables is with time-history plots (figure 9). At 
selected spatial locations we present the time histories of ot a, ut, and two different pressure 

differences. These times histories are helpful in identifying the end of the transient phase of 
the simulation. At early times the shedding frequency is not constant, and the amplitude of 
oscillation of the various variables changes. Properties of the K~trm~n street are studied and 

summarized after this initial phase has ended. In particular, the dependence of Strouhal 
frequency on upstream volume fraction is summarized in figure 10. 

Another way in which we summarize the flow is by tracking individual vortices in time 

and in space. We follow the histories of a¢, N, K, r and p in a particular vortex from the time 
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Figure 4. Contour plots of bubble number density at equal time intervals. (a) t - 2.410 sec, (b) t - 
2.475 sec, (c) t - 2.540 sec, (d) t - 2.605 sec, (e) t - 2.670 sec, (f) t - 2.735 sec, (g) t - 2.800 sec, (b) 

t - 2.865 sec, (i) t - 2.930 sec. 

it originates at the obstacle to the t ime it flows out the end of  the channel.  Figure 1 1 shows a¢ 

as a function of  time, while figures 12-16 show a~ and the other field variables as functions 
of  position. 

C. Description of  the base calculation 
The contour  plots shown in figures 2 -6  and the velocity vector plots in figures 7 and 8 

summarize  the evolution of  the yon Kfirmfin vortex street that  developed in our base 

calculation, run 2. We show plots of  the scalar variables at nine times, selected so that  we can 

identify the main properties and structural  features of  the two-phase street. Arrows lying 

outside of  the plots indicate the positions of  the vortices that  enter into our discussions. These 
positions have been marked in figure 2 to indicate for each vortex the downstream location of  
its local maximum of gas volume fraction. Precisely, these same localities have also been 

marked on figures 3-8  in order  to give a visual indication of  slight lags or leads in the other 
field variables relative to the maxima of  ac. Vortices created on the left or right side of  the 

obstacle are identified by arrows on their respective sides. 

Figures 2 -6  present the contour  patterns of  a¢, p, N, r and K at a sequence of  evenly 

spaced times that  have been chosen so that  they are not perfectly in phase with the shedding 
of  the vortices and, therefore, illustrate the street at a variety of  different stages in its 
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evolution. The contour plots show that  there is a close correlation among the maxima and /o r  

minima of  all the field variables in association with each part icular  vortex. In addition the 

velocity vectors in figures 7 and 8 show that  these vortex positions correlate well with the 

location of  sharp turns for both the gas and liquid velocity fields. 

Consider now the stages in development and propagation of  each new vortex. Vortex 5 

illustrates the process especially well. Its incipient formation is just  becoming visible in f rame 

f of  figures 2-6.  In particular,  figure 4( f )  shows a distinct increase in the bubble number  
density on the left-hand side of  the obstacle even before there is an appreciable buildup of  gas 

volume fraction in figure 2(f) .  The  bubble radius as shown in figure 5(f)  is simultaneously 

developing a significant min imum on the left-hand side of  the obstacle as a result of  the same 
shear forces that  are working to increase the number  of  bubbles per unit volume. In this 

regard it should be noted, however, that  at  any evolutionary stage the shear processes at the 

leading corners of  the obstacle rupture  the bubble into a local min imum that  persists with 
some oscillation on both sides. The presence o f  this shear mechanism is further  confirmed in 
reference to figure 6, which illustrates persistent local maxima in the momentum exchange 

rate between fields at the leading corners. Frames g of  the figures 2-6  show the full 
development of  vortex 5 whose incipient appearance  was noted at the stage illustrated in 
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f ramer  In particular, the bubble number density contours for this vortex show the presence 
of severe fragmentation with two maxima, one persisting as a result of the leading edge shear 
and the other arising downstream from the trailing edge as a result of shearing forces in the 
flow-separation vorticity layer [illustrated by the large momentum exchange rate observed 
near the left trailing edge in figure 6(g)]. Associated with the pair of bubble number density 
maxima is a broad minimum in the bubble radius. Significant accumulation of gas resulting 
from reverse centrifuging is confined, however, only to the downstream bubble number 
density maximum of vortex #5 and does not occur due to the absence ~f centrifugation from 
vortical motion in the shear region along the side in agreement with the expected mechanism 
for accumulation of gas volume fraction. 

In the next stage for vortex 5, figure 4(h) demonstrates that the bubble number density 
maximum retains its duality. The same frame shows that this split persists downstream in 
vortices 3 and 4. Indeed, frames a, c and e of the figure indicate the duality may occasionally 
persist all the way to the outlet. Figures 2(h) and 5(h) show that this duality is also reflected 
in the maximum of the gas volume fraction and in the minimum of the bubble radius. In the 
case of the gas volume fraction the vortex pair may persist with one maximum predominat- 
ing and the other riding along as an associated satellite. Figures 12-14 illustrate even more 
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clearly the nature of this primary/secondary vortex structure as each vortex package 
propagates downstream. This whole sequence described for vortex 5 on the left side is 
confirmed for vortex 4 on the right side, whose incipient presence is just becoming visible in 
figures 4(d) and 5(d). 

Regarding the behavior of  dynamic pressure during these stages of  vortex formation, the 

closest manifestation of  incipient stages is present in figures 3(c) and 3(f )  in association with 

vortices 3 and 5, respectively. The other frames show variations in dynamic pressure lateral 
to the obstacle, which are dominated by the gradients that accelerate the fluid in such a way 
as to conserve mass flux in the constricted channels lying between the obstacle and the 
nearby walls. In other respects the principal features discernable from figure 3 are the 
pressure minima lying near the center of  each vortex. In addition, several frames in figure 3 
show anomalous pressure gradients surrouflding the upper left and right corners of  the 
calculationai region. These pressure extremes result from an intrinsic difficulty in the 
specification of  output boundary conditions for far subsonic flow, but they have a negligible 
effect on the dynamics  as demonstrated by means of  an otherwise identical calculation 
performed using a shorter computing mesh (run I). 

Figures 7 and 8 show that whereas the dominant patterns of  the velocity vector fields are 
nominally the same for gas and liquid at each frame, the detailed picture of  the patterns show 
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differences between the two fields, the effects of which are especially evident in such contour 
plots as those of the momentum exchange function (figure 6). The concentrations of gas 
volume fraction in figure 2 also result from differences in velocity; in particular, the 
difference between converging gas velocity towards the center of each vortex and diverging 
fluid velocity away from the center. Another persistent difference between the two velocity 
fields is that which is produced by the continuous action of the gas buoyancy relative to the 
liquid. The local accumulation of gas volume fraction can be expected to produce a buoyancy 
enhancement to the migration rate for the gas close to that of the bubble rise terminal 
velocity upstream of the obstacle, which for our bubble size is 25 cm/s.  This tendency, 
however, is mitigated by the increased drag from the smaller bubble size behind the obstacle 
as shown in figure 15. Less obvious is our observation that the concentration centers, each 
associated with a vortex, appear to move with an enhanced speed in such a way as to force the 
more rapid transport of the vortices themselves. For our base case, run 2, we observe that the 
liquid speed through the stream tube containing the vortices is about 64 cm/s,  well below the 
inlet speed of 90 cm/s.  (The apparent discrepancy is resolved by observing that outside of the 
downstream vortex stream tube the liquid speed is distinctly higher than the inlet speed, in 
such a way as to give the same volumetric flux as the inflow.) Typical bubble speeds within 
the vortex stream tube are approximately 85 cm/s  and plots of the downstream position of 

MF 12 : I-D 
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concentration center as a function of time show essentially that same speed. The difference 
between gas speed and fluid speed is thus 20% lower than the initial terminal velocity, 
consistent with expectations for the smaller bubbles. Motion-picture projection of a time 
sequence of velocity vectors shows clearly the presence of vortex splitting, in close association 
with the double peaks of bubble number density described above. 

Another feature observed in this study is the presence of a tongue of higher gas volume 
fraction at the opposite side of the obstacle from the side at which the associated vortex is 
shed. This tongue structure is especially visible on the right side of the obstacle in figures 
2(a), 2(e) and 2(h) and on the left side of figures 2(c) and 2(i). 

Figure 9 is a set of time-history plots for ac, uL and two transverse pressure differences. 
In all four plots, the onset of regular oscillatory flow is preceded by an early irregular stage, 
whose details are not relevant because of the arbitrary nature of the initial conditions. 
Figures 9(a) and 9(b) show the gas volume fraction and the transverse (horizontal) 
component of the liquid velocity at a location 5.75 obstacle widths directly downstream and 
just inside the left-hand corner of the obstacle. The gas volume fraction time history shows 
the influences of vortices from both sides of the street, as indicated by the double amplitude 
in the regular oscillatory stage. Figure 9(c) shows pressure difference across the obstacle. 
Figure 9(d) shows the pressure difference across the same transverse interval 5.75 obstacle 
widths downstream from the trailing edge. 

From these time-history plots we can calculate the Strouhal number, S - f d / u ,  in which 
it is to be emphasized that d is the geometric width of the obstacle. There is some evidence to 
suggest that a more appropriate definition of the Strouhal number would be based upon an 
effective obstacle width, d,, which would vary not only with Reynolds number, but also with 
obstacle configuration in such a way that the resulting S would be nearly constant at a value 
of about 0.23, as discussed below. In experiments with a thin, rectangular object, Fage and 
Johansen (1927) have shown that the Strouhal number is 0.146 at a Reynolds number of 
1.5 x 105. With divergence of the flow in front of the upstream face of their flat plate, it 
is not surprising that the effective width could exceed the geometric width by the factor 
0 .23/0 .146-  1.58. 

Lamb (1932) has shown that for the vena contracta the far downstream cross section of a 
stream bounded by a cavity is 0.611 times the orifice width. If the flow around our flat plate, 
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Figure 12. Air volume fraction of two successive vortices as functions of spatial location. 

bounded by rigid walls with a blockage ratio B - d ~  W = 1/5, were ideal (nonviscous) flow with 
a cavity in the wake of the obstacle then the far downstream width of the flow separation line 
would be given by d, = d (0.611 + 0.389/B). With a blockage ratio of i/% d , / d  - 2.556, 
which considerably exceeds the factor of 1.58 necessary for the Strouhal frequency factor 
discussed above. The vena contracta far overcorrects the circumstance for which the 
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appropriate effective width would be governed by the flow field much closer to the plate. 
Nevertheless, this heuristic observation tends to confirm our premise that there is good 
potential for expansion of the flow separation line to a width significantly exceeding that of 
the obstacle itself. For a circular cylinder, (Roshko 1954), the experimentally measured 
Strouhal number based on the geometric diameter of the cylinder is about 0.204 at a 
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I 

Reynolds number of 300, climbing to an asymptotic value of about 0.210 for higher Reynolds 
numbers. This result implies an effective obstacle width of d, = 0.23/0.204d - 1.13d, which 
again is consistent with a slight spreading of the flow separation streamline beyond the 
geometric width of the cylinder. 

The value of effective Strouhal number, 0.23, has been obtained by our performance of 
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some auxiliary, single-phase calculations in which we accomplished the most accurate 
possible representation of effective width by means of inserting the fluid flow parallel to the 
sides of a long, rectangular obstacle. Fine resolution calculations yielded S - 0.23 at a 
Reynolds number of 333. With coarser resolution (four finite difference cells across the 
obstacle), the value was 11% lower. Previous single-phase calculations include those of 

Fromm & Harlow (1963) in which they examined the flow past a rectangular obstacle and 
obtained a Strouhal number  of 0.137 at a Reynolds number  of 300. Accounting for the 
effects of coarse resolution we can estimate a corrected value of about O. 15 in agreement with 
the results of  Fage & Johansen (1927), and can be scaled to the postulated value of 0.23 in 
the same way as described for the experiments. 
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The two-phase calculations in the present study resulted in Strouhal numbers as shown 
by the []'s in figure 10, indicating a value of 0.181 for aoi,~ ffi 0.0 and dropping uniformly 
for higher inlet volume fractions to a value of 0.142 at o~oi,~ ~ 331/3%, the largest inlet volume 
fraction for which we were able to obtain a (significantly erratic) street. Figure l 0 also shows 
the Strouhal number variation corrected for coarseness of finite difference resolution (the 
A's), as obtained from the auxiliary studies described above. These Strouhal numbers are 
based on the actual geometric width of the rectangular obstacle used in the calculations. The 
effective width at the limit of c~ai~ct - 0.0 is expected to be somewhat larger, as discussed 
above. For aai,~ increasing to 331/3% the uniform drop in Strouhal number is postulated to 
result from a continually increasing effective width produced by the accumulation of bubbles 
in the vicinity of the obstacle, as shown in figures 4 and 5. 

Directly relevant to these calculations are the experimental results of Hulin et aL 
(1982), which show that the Strouhal number for flow past a trapezoidal object has a 
magnitude of about 0.220 in the absence of bubbles, rising to about 0.238 for ,c~m~ ffi 10% 
and thereafter decreasing until the structure of the street is obliterated at an inlet air volume 
fraction of about 24%. Their Strouhal number is based on the greatest width of the trapezoid, 
which lies at the leading upstream edge relative to the incoming flow. These results are 
shown as a dashed curve in figure 10. 

In terms of our interpretation regarding the constant Strouhal number of 0.23 when 
calculated with effective width, it is apparent that the effective width in the experiments 
varies from de = (0.23/0.22)d for the case of no bubbles to de ~ (0.23/0.238)d at a 10% 
incoming air volume fraction and thereafter increasing to d, ~ (0.23/0.218)d at the largest 
incoming volume fraction (24%) considered in the experiments. To resolve the apparent 
paradox demonstrated by this interpretation, we speculate that the trapezoidal shape of the 
obstacle plays a crucial role in the determination of the effective width. At the pure fluid 
limit, the downstream contraction of the obstacle apparently decreases the effective width of 
the flow separation line by an appreciable amount in comparison to our expectations for a 
thin fiat plate. The experimentally increasing Strouhal number indicates that the effect of 
sparse bubbles is to pull the dividing streamline even closer to the obstacle, ultimately to the 
extent that the effective width is even less than the geometric width at the leading edge. 
Because the downstream width of the obstacle is 0.671 of the upstream width, we see that the 
minimum ratio of dc/d, equal to 0.97, is less than the contraction that would occur if the 
dividing streamline were to follow the lateral surfaces. With further increase in the incoming 
volume fraction of air the tendency reverses, and the effective width ultimately exceeds again 
the geometric widths at the leading face. 

If the Strouhal number results of Hulin et al. had been scaled by some intermediate 
geometric width between those of the leading and trailing faces the curve representing their 
data in figure 10 would have been shifted downwards. In our calculations, we used a 
rectangular obstacle with a cross section of 3.0 cm, which lies near the average of their 
leading edge face (d ~ 3.5 cm) and their trailing edge face (d - 2.35 cm). Scaling our results 
by the factor 3.5/3.0 leads to the o's in figure 10. 

Although our result does not exactly agree with the data of Hulin'et al. the trends of large 
inlet air volume fraction are closely parallel. To resolve the remaining discrepancy would 
require a finely zoned calculation of the actual trapezoidal object itself, currently precluded 
by excessive computer expense. 

Figure 1 ! is a time-history plot of successive vortices shed from alternate sides of the 
obstacle for a typical street (run 1 ). The profiles of the successive vortices are very similar to 
each other; however, we notice that every other vortex (the ones that are shed from the left) 
has a slightly smaller maximum gas accumulation. This difference results from the initial 
perturbation used in the calculation to initiate the street, and it disappears at late times. 

Figures 12-16 track two successive vortices as they move downstream. Each graph shows 
the maximum (or minimum) value of the field variable associated with the particular vortex, 



$8 T.L. COOK and F. H. HARLOW 

plotted as a function of distance from the trailing edge of the obstacle. Within each vortex we 
usually observe two extremes for each field variable and have attempted to identify one of 
these, denoted by A's, as the primary and the other, denoted by o's, as the secondary or 
satellite. In some cases the differentiation is not clear because the two have briefly coalesced 
and then reseparated. In others the distinction remains clear despite their apparent merging 
in figures 12-16. Immediately evident in those figures is the basis for our denoting which 
extremai is primary and which is secondary; namely, that the primary is the one that reaches 
the greatest extreme in the entire course of its downstream transport. Where the distinction 
has been lost due to merging and reseparation, we have identified the primary as the more 
extreme value after separation. 

Figure 12 shows the gas volume fraction for vortices number 2 and 3. The vortex in figure 
12(a) originates on the right side of the obstacle; the vortex in figure 12(b), on the left side. 
Figure 12(a) shows the periodic occurrence of the satellite concentration especially well. As 
shown in figure 2, vortices shed from the right side of the obstacle tend to exhibit the satellite 
only on their right side; those shed from the left side likewise have the incipient satellite only 
on their left side. The paradoxical dominance of the satellite concentration center close to the 
obstacle is scarcely visible in the contour plots of figure 2, but is abundantly confirmed by a 
close analysis of the calculationai numbers. During the earliest stage of vortex formation, the 
leading center of concentration is slower to accumulate gas than the trailing center, but 
rapidly makes up for this slow start by the time the pair has moved appreciably 
downstream. 

In comparing peak gas concentrations in the vortices, Hulin et al. (1983) give two datum 
points that are directly relevant to the present work. They show that the peak local void 
fraction is 20% for an inlet value of 2.8% and is greater than 40% for inlet values greater than 
8.2%. Our calculations for inlet void fractions of 2.8% and 10% show peak accumulations in 
the vortices of 21% and 42%, respectively. 

The periodic appearance and disappearance of the satellite is correlated with a horizontal 
oscillation of the position of maximum concentration as it moves downstream, with the 
satellites being detectable principally in that phase of the oscillation that brings the vortex 
closer to the wall on its shedding side. As shown in figure 12(b) the appearance of the 
satellite vortex is not necessarily invariable, with vortex 3 displaying a long interval with that 
feature absent. Another contrast between the concentration variation for vortices 2 and 3 is 
apparent as each vortex arrives at a distance well downstream from the obstacle. Vortex 2 
shows a significant rise in the concentration of its principal maximum at about 30 cm 
downstream, whereas vortex 3 shows scarcely any rise at all at that same downstream 
distance. The smallest level of concentration for these two vortices also differs; it appears 
that the primary and satellite for vortex 3 coalesced at about 15 cm downstream, thereby 
leveling off the concentration variation at that point. For vortex 2 the primary and satellite 
remain distinct, allowing the maximum concentration to continue dropping until about 24 
cm downstream. 

The bubble number density plots for the same two vortices are shown in figures 13(a) and 
13(b). As observed in figure 4, the satellite peaks are more pronounced for the number 
density plots than for the volume fractions; they tend somewhat more to lag the position of 
the primary peak rather than to lie lateral to it as in figure 2. 

Figures 14(a) and 14(b) show the extremes of momentum exchange rate between the two 
fields for vortices 2 and 3. The significance of momentum exchange is that it indicates the 
strength of the shear forces exerted on the bubbles by the surrounding liquid, which is closely 
related to the rate at which the bubbles are fragmented. Although the maximum occurs 
about 7 cm downstream from the obstacle, the minimum bubble radius [as shown in figures 
19(a) and 19(b)] begins to increase at about 3 cm downstream from the obstacle. Resolution 
of this paradox results from a closer examination of the shearing forces that are very intense 
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along the sides of the obstacle itself although not visible in figure 14, which shows only the 
vortex related extremes. Thus, the formation of a minimum bubble size occurs before the 
specific differentiation of the vortices themselves, as indicated by the dashed lines to the left 
in figure 15. These lines follow the bubble-size behavior along upstream streamlines that 
ultimately connect with the fluid in the respective vortices. The bubble size drops rapidly 
from the inlet equilibrium radius (0.2 cm); thereafter, rising rather uniformly toward that 
same value, which it should ultimately reattain far downstream of the obstacle. 

The dynamic pressure associated with the vortices is shown in figures 16(a) and 16(b). 
The vortex centers are local minima. The lowest pressure occurs in the vortex just after it 
breaks away from the obstacle. The large pressure gradients lateral to the obstacle produce 
the large accelerations responsible for the extreme shearing forces described for this region. 

D. Comparisons among the four calculations 
The shortened channel length in run 1 allows us to examine the effect of the outflow 

boundary condition on the street. Calculational results for run 1 are close to those for run 2, 
indicating that the far downstream results for concentration behavior (shown in figure 12) 
are significant. 

In run 3 the channel walls are moved outward, changing the blockage ratio. The 
calculationai results of run 3 differ from those of run 2 in several respects. The absolute 
maximum in the gas accumulation, which occurs shortly after vortex shedding, is greater 
than the absolute maximum predicted in run 2 by about 7%. The bubble number density is 
slightly lower in the far downstream region for run 3 than for run 2, and the corresponding 
bubble radii in run 3 are larger. The street in run 3 is less chaotic, and the bubble radii 
approach the input equilibrium values more rapidly in the far downstream region. The 
Strouhal frequency for run 3 is 7% lower than for the other three runs. 

In run 2, wb is chosen such that relaxation to local equilibrium is very fast relative to the 
period of the street. Thus, when local conditions favor fragmentation or coalescence, the 
bubbles respond almost instantaneously. In run 4, the relaxation rate is slower, and the time 
required for size adjustment is comparable to the period of the street itself. Figure 17 shows 
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Figure 17. Primary and satellite air volumc fraction as functions of spatial location for rapid 
coale, sccnc¢/framcntation mod©l (run 2) and delayed coalesccncc/fragmcntation model (run 4). 
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Figure 18. Bubble radius as a function of spatial location for rapid coalescence/fragmentation model 
(run 2) and delayed coalescence/fragmentation model (run 4). 

that the variations in gas-volume fraction are nearly the same for both calculations. 
However, very different bubble radii (figure 18) and bubble number densities (figure 19) are 
predicted. The slow accommodation in run 4 results in only a small departure from the inlet 
value throughout the entire flow region. The corresponding effect on bubble number density 
is shown in figure 19. 
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Figure 19. Primary and satellite bubble number density as functions of spatial location for rapid 
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